

GEOMETRICALLY NON-LINEAR ANALYSIS OF A THICK ANNULAR PLATE WITH ELASTICALLY CONSTRAINED EDGE USING GALERKIN'S METHOD

P. C. DUMIR AND G. P. DUBE

Applied Mechanics Department, I.I.T. Delhi, New Delhi 110016, India. E-mail: pcd@am.iitd.ernet.in

(Received 25 January 2001)

1. INTRODUCTION

Raju and Rao [1] and Reddy and Huang [2] have presented axisymmetric non-linear vibration of moderately thick circular and annular plates using the finite-element method. Galerkin solutions using one-term spatial mode shape for deflection, are presented by Sathyamoorthy [3, 4] for non-linear vibration of circular thick plates, employing first order shear deformation theory and Berger's approximation. Dumir and Shingal [5, 6] have presented geometrically non-linear static, transient and postbuckling analysis of thick annular plates, employing orthogonal point collocation method. Neetha *et al.* [7] have developed postbuckling analysis of a moderately thick elastic annular plate using the finite-element method.

This work presents an approximate closed-form analytical solution of the geometrically non-linear, axisymmetric, moderately large deflection response of a polar orthotropic, moderately thick, annular plate with a free hole and elastically constrained outer edge. Neglecting the rotational and in-plane inertia, the geometrically non-linear first order shear deformation theory (FSDT) is formulated in terms of deflection w, rotation ψ of the normal to the midplane and the stress function Φ . The rotation ψ is approximated by a one-term mode shape and the moment equation of equilibrium is solved exactly for w satisfying all out-of-plane boundary conditions. The compatibility equation is solved exactly for Φ satisfying the in-plane boundary conditions. The Galerkin's method is applied to the equation of motion to obtain Duffing-type equation for the deflection. The effect of the rotational and in-plane stiffnesses of the support and the thickness and orthotropic parameters on the buckling, postbuckling, static, transient and non-linear vibration response of orthotropic thick plates is studied.

2. GOVERNING EQUATIONS OF FSDT

Consider an axisymmetric deformation of an annulus of outer radius a, inner radius b, thickness h and density γ , with mid-plane at z = 0. For a plate with elastically restrained outer edge, with rotational and inplane stiffnesses \bar{k}_b , \bar{k}_i , subjected to applied in-plane radial force resultant \bar{N} and uniformly distributed transverse load q, the boundary conditions at r = a are

$$\bar{w} = 0, \qquad M_r = -\bar{k}_b \bar{\psi}, \quad N_r = \bar{\Phi}/r = \bar{N} - \bar{k}_i \bar{u}^0,$$
 (1)

where \bar{w} , \bar{u}^0 and $\bar{\psi}$ are the transverse and radial displacements of the mid-plane, rotation of its normal and $\bar{\Phi}$ is the stress function. The simply supported (S), clamped (C) and movable (M), immovable (I) boundary conditions correspond to $\bar{k}_b = 0$, ∞ and $\bar{k}_i = 0$, ∞ respectively. The variables are non-dimensionalized as

$$\rho = r/a, \quad w = \bar{w}/h, \quad u = \bar{u}a/h^2, \quad \psi = a\psi/h, \quad \Phi = a\bar{\Phi}/E_0h^3,$$

$$\tau = t(h/a^2)(E_0/\gamma)^{1/2}, \quad A_{\alpha\beta}^* = \bar{A}_{\alpha\beta}^*E_0h, \quad A_{55} = \bar{A}_{55}/E_0h, \quad D_{\alpha\beta} = \bar{D}_{\alpha\beta}/E_0h^3,$$

$$s = a/h, \quad \xi = b/a, \quad N = \bar{N}a^2/E_0h^3, \quad Q = qa^4/E_0h^4,$$

$$k_i = \bar{k}_i a/E_0h, \quad k_b = \bar{k}_b a/E_0h^3, \quad (2)$$

where E_0 is a specific Young's modulus, $(\bar{A}, \bar{D}) = (h, h^2/12)\bar{Q}, \bar{A}^* = \bar{A}^{-1}$ and $\bar{A}_{55} = k_5^2 h G_{zr}$, with $[\bar{Q}_{11}, \bar{Q}_{12}, \bar{Q}_{22}] = [E_r, v_{r\theta} E_{\theta}, E_{\theta}]/(1 - v_{r\theta} v_{\theta r})$. E_i are Young's moduli, v_{ij} are the Poisson ratios and G_{ij} are shear moduli. The shear correction factor k_5^2 is taken as 5/6.

The dimensionless forms of the governing equations of the geometrically non-linear FSDT [8] are

$$A_{22}^{*}(\rho\Phi''+\Phi') - A_{11}^{*}\Phi/\rho = -w'^{2}/2,$$
(3)

$$D_{11}(\psi'' + \psi'/\rho) - D_{22}\psi/\rho^2 - s^2 A_{55}(\psi + w') = 0,$$
(4)

$$[s^2 A_{55} \rho(\psi + w') + \Phi w']' / \rho + Q - \ddot{w} = 0,$$
(5)

$$\psi(\xi) + w'(\xi) = 0, \quad D_{11}\psi'(\xi) + D_{12}\psi(\xi)/\xi = 0, \quad D_{11}\psi'(1) + D_{12}\psi(1) = -k_b\psi(1), \quad (6)$$

$$w(1) = 0, \quad \Phi(\xi) = 0, \quad \Phi(1) = N - k_i [A_{21}^* \Phi(1) + A_{22}^* \Phi'(1)], \tag{7}$$

where $()' = ()_{,\rho}, (\cdot) = ()_{,\tau}.$

3. METHOD OF SOLUTION

The approximate analytical solution is based on assumed spatial mode shapes for ψ , w having the same form as in the linear solution for static load Q. The rotation ψ is approximated as

$$\psi = \eta(\tau) \sum_{i=1}^{4} \psi_i \rho^{n_i} \tag{8}$$

with $n_i = 3, 1, -p, p; p = (D_{22}/D_{11})^{1/2} = (A_{11}^*/A_{22}^*)^{1/2}, \psi_4 = 1, \psi_1, \psi_2$ and ψ_3 are obtained from equations (6) using equation (4):

$$(9D_{11} - D_{22})\xi\psi_1 + (D_{11} - D_{22})\psi_2/\xi = 0,$$

$$G_3(\xi)\psi_1 + G_1(\xi)\psi_2 + G_{-p}(\xi)\psi_3 = -G_p(\xi),$$

$$[G_3(1) + k_b]\psi_1 + [G_1(1) + k_b]\psi_2 + [G_{-p}(1) + k_b]\psi_3 = -k_b - G_p(1),$$
(9)

with $G_m(\rho) = (mD_{11} + D_{12})\rho^{m-1}$. Equation (4) is solved accurately, subject to condition (7)₁, in order to yield

$$w = \eta(\tau) \left[\sum_{i=1}^{5} w_i \rho^{m_i} + w_6 \ln \rho \right], \quad w' = \eta(\tau) \sum_{i=1}^{5} d_i \rho^{n_i}$$
(10)

with $m_i = 0, 4, 2, 1 - p, 1 + p, w_2 = -\psi_1/4, w_3 = -\psi_2/2 + (9D_{11} - D_{22})\psi_1/2s^2A_{55},$ $w_4 = \psi_3/(p-1), w_5 = -1/(p+1), w_6 = (D_{11} - D_{22})\psi_2/s^2A_{55},$

$$w_1 = -w_2 - w_3 - w_4 - w_5, \qquad d_i = m_{i+1}w_{i+1}, \quad i = 1, \dots, 4, \quad d_5 = w_6, \quad n_5 = -1.$$
 (11)

Equation (3) is solved accurately, subject to conditions $(7)_2$ and $(7)_3$, in order to yield the stress function Φ as

$$\Phi = \eta^{2}(\tau) \left[\sum_{i=1}^{5} \sum_{j=1}^{5*} d_{i}d_{j}I_{n_{i}+n_{j}+1}\rho^{n_{i}+n_{j}+1} + \sum_{m=1}^{2} (a_{k}+c_{k}\ln\rho)\rho^{l_{k}} \right] + N \sum_{m=1}^{2} b_{k}\rho^{l_{k}}$$
(12)

with $l_1 = p$, $l_2 = -p$ and

$$[a_1, a_2, b_1, b_2] = [(x_2x_6 - x_4x_5), (x_3x_5 - x_1x_6), x_4, -x_3]/(x_1x_4 - x_2x_3),$$

 $[c_1, c_2] = [-d_4, d_3]d_5/2pA_{22}^*, \quad x_1 = 1 + k_i(A_{21}^* + pA_{22}^*), \quad x_2 = 1 + k_i(A_{21}^* - pA_{22}^*),$

$$x_3 = \xi^p, \quad x_4 = \xi^{-p},$$

$$x_{5} = \sum_{i=1}^{5} \sum_{j=1}^{5*} \left[1 + k_{i} \{ A_{21}^{*} + (n_{i} + n_{j} + 1) A_{22}^{*} \} \right] d_{i} d_{j} I_{n_{i} + n_{j} + 1} + k_{i} A_{22}^{*} (c_{1} + c_{2}),$$

$$x_{6} = \sum_{i=1}^{5} \sum_{j=1}^{5*} d_{i} d_{j} I_{n_{i} + n_{j} + 1} \xi^{n_{i} + n_{j} + 1} + \sum_{m=1}^{2} c_{m} \xi^{l_{m}} \ln \xi, \quad I_{q} = -\frac{1}{2} (q^{2} A_{22}^{*} - A_{11}^{*}). \quad (13)$$

The superscript * in the double sum denotes that the terms for (i, j) = (3, 5), (4, 5), (5, 3), (5, 4)are excluded. Substituting ψ , w, Φ from equations (8), (10) and (12) into equation (5), applying the Galerkin procedure of multiplying by ρw and integrating from $\rho = \xi$ to $\rho = 1$, yields on integration by parts, an equation for η :

$$B_1\ddot{\eta} + (B_2 + B_3N)\eta + B_4\eta^3 = B_5Q,\tag{14}$$

where

$$B_{1} = -\sum_{i=1}^{5} \hat{J}_{m_{i}+2} w_{i} - [\bar{L}_{2} - \hat{J}_{2} - \xi^{2} J_{0} \ln \xi] w_{6}/2,$$

$$B_{2} = (9D_{11} - D_{22})\psi_{1}J_{2} + (D_{11} - D_{22})\psi_{2}J_{0}, \quad B_{3} = \sum_{i=1}^{5}\sum_{m=1}^{2} d_{i}b_{m}J_{n_{i}+l_{m}}, \quad B_{5} = -\hat{J}_{2},$$

$$B_{4} = \sum_{k=1}^{5} \sum_{m=1}^{5} d_{k}(a_{m}J_{n_{k}+l_{m}} + c_{m}\bar{L}_{n_{k}+l_{m}}) + \sum_{i=1}^{5} \sum_{j=1}^{5*} \sum_{k=1}^{5} d_{i}d_{j}d_{k}I_{n_{i}+n_{j}+1}J_{n_{i}+n_{j}+n_{k}+1},$$

$$J_{q} = \int_{\xi}^{1} \sum_{i=1}^{5} d_{i}\rho^{n_{i}}\rho^{q}d\rho = \sum_{i=1}^{5} d_{i}H_{n_{i}+q}, \quad \text{with} \quad H_{m} = \int_{\xi}^{1} \rho^{m}d\rho,$$

$$H_{m} = (1 - \xi^{m+1})/(m+1) \quad \text{for } m \neq -1 \quad \text{and} \quad H_{-1} = -\ln\xi,$$

$$\hat{J}_{q} = (J_{q} - \xi^{q}J_{0})/q, \quad \bar{L}_{q} = \int_{\xi}^{1} \sum_{i=1}^{5} d_{i}\rho^{n_{i}}\rho^{q}\ln\rho\,d\rho = \sum_{i=1}^{5} d_{i}L_{n_{i}+q}, \quad L_{m} = \int_{\xi}^{1} \rho^{m}\ln\rho\,d\rho,$$

$$L_{m} = -[1 + \{(m+1)\ln\xi - 1\}\xi^{m+1}]/(m+1)^{2} \quad \text{for } m \neq -1 \text{ and } L_{-1} = -(\ln\xi)^{2}/2.$$
(15)

The deflection at the inner edge is given by $w(\xi, \tau) = \eta_1(\tau) = B_6 \eta(\tau)$ with $B_6 = \sum_{i=1}^{5} w_i \xi^{m_i} + w_6 \ln \xi$. The governing equation for deflection at the inner edge is obtained from equation (14) as

$$A_1\ddot{\eta}_1 + (A_2 + A_3N)\eta_1 + A_4\eta_1^3 = A_5Q,$$
(16)

where $A_1 = B_1/B_6$, $A_2 = B_2/B_6$, $A_3 = B_3/B_6$, $A_4 = B_4/(B_6)^3$, $A_5 = B_5$.

The buckling load N_{cr} and the postbuckling response is obtained by setting $\ddot{\eta}_1 = 0, Q = 0$ in equation (16):

$$n = N/N_{cr} = 1 + \varepsilon_1 \eta_1^2, \qquad N_{cr} = -A_2/A_3, \quad \varepsilon_1 = A_4/A_2,$$
 (17)

with ε_1 being the postbuckling parameter. The static response under uniformly distributed load Q is given by

$$Q = \alpha_1 (1 - n)\eta_1 + \alpha_2 \eta_1^3 = \alpha_1 \eta_1 [1 - n + \varepsilon_1 \eta_1^2], \qquad \alpha_1 = A_2 / A_5, \qquad \alpha_2 = A_4 / A_5.$$
(18)

The maximum deflection $\eta_{1 max}$ under step load Q_0 is obtained by integrating equation (16):

$$Q_0 = \alpha_1 (1 - n) \eta_{1_{max}} / 2 + \alpha_2 \eta_{1_{max}}^3 / 4 = \alpha_1 [1 - n + \varepsilon_1 \eta_{1_{max}}^2 / 2] \eta_{1_{max}} / 2.$$
(19)

The free non-linear vibrations are governed by

$$\ddot{\eta}_1 + \omega_0^2(\eta_1 + \varepsilon \eta_1^3) = 0, \qquad \omega_0 = \omega_0^* [\gamma a^4 / E_0 h^2]^{1/2} = [(1 - n)A_2 / A_1]^{1/2}, \quad \varepsilon = \varepsilon_1 / (1 - n),$$
(20)

where ω_0 and ω_0^* are the dimensionless and dimensional fundamental linear frequencies. The ratio T_C of the non-linear period T for amplitude C to the linear period T_0 can be expressed in terms of the complete elliptic integral K of the first kind:

$$T_C = T/T_0 = 2K(e)/\pi (1 + \varepsilon C^2)^{1/2}, \quad e = [\varepsilon C^2/2(1 + \varepsilon C^2)]^{1/2}.$$
 (21)

Tai	ble 1

Comparison of postbuckling response (b/a = 0.4)

	3.7
_	/N

		СМ							SM						
		Present			Collocation				Present		Collocation				
β	S	$\eta_1 = 0$	$\eta_1 = 1$	$\eta_1 = 2$	$\eta_1 = 0$	$\eta_1 = 1$	$\eta_1 = 2$	$\eta_1 = 0$	$\eta_1 = 1$	$\eta_1 = 2$	$\eta_1 = 0$	$\eta_1 = 1$	$\eta_1 = 2$		
1	100	1.803	2.020	2.672	1.690	1.941	2.653	0.250	0.356	0.674	0.248	0.353	0.649		
	10	1.773	1.980	2.599	1.632	1.879	2.572	0.249	0.355	0.671	0.246	0.351	0.644		
	6	1.706	1.896	2.464	1.536	1.776	2.436	0.246	0.351	0.666	0.243	0.347	0.635		
3	100	2.961	3.538	5.268	2.822	3.485	5.267	0.741	1.007	1.807	0.741	1.001	1.729		
	10	2.852	3.393	5.015	2.675	3.318	5.003	0.728	0.993	1.788	0.728	0.986	1.696		
	6	2.643	3.130	4.593	2.444	3.052	4.575	0.705	0.968	1.758	0.705	0.959	1.640		
10	100	7.413	8.980	13.679	7.315	8.957	13.559	2.386	3.096	5.223	2.348	3.027	5.070		
10	10	6.675	8.105	12.392	6.498	8.026	12.104	2.271	2.979	5.103	2.227	2.891	4.816		
	6	5.549	6.803	10.564	5.375	6.716	9.902	2.089	2.795	4.915	2.038	2.675	4.402		
1/3	100	1.388	4.607	5.285	4.120	4.375	5.125	0.230	0.337	0.660	0.230	0.337	0.652		
1/5	100	4,108	4.007	1.070	3.774	4.022	J 125 4.741	0.230	0.336	0.658	0.230	0.336	0.647		
	10	4 1 9 0	2.000	4 970	2.070	4 022	4/41	0.229	0.330	0.652	0.226	0.330	0.628		
	0	5.757	2.090	4.360	5.712	5.308	4.170	0.220	0.333	0.033	0.220	0.333	0.039		
		$k_b = 1, k_i = 0$						$k_b = k_i = 1$							
1/3	100	2.053	2.193	2.627	2.012	2.169	2.624	4.328	5.052	7.225	4.242	4.980	7.191		
1 -	10	1.966	2.103	2.515	1.918	2.072	2.515	4.134	4.865	7.026	4.044	4.783	6.994		
	6	1.821	1.950	2.335	1.769	1.918	2.338	3.839	4.557	6.710	3.729	4.470	6.686		

4. RESULTS AND CONCLUSIONS

The results are non-dimensionalized with E_0 taken to be equal to the smaller in-plane Young's modulus. Plates are analyzed with $\beta = E_0/E_r = 1, 3, 10, 1/3$, having the greater in-plane Poisson ratio of 0.25 and $G_{rz}/E_0 = 0.4$. The buckling and postbuckling loads of thick polar orthotropic annular plate with b/a = 0.4 are compared in Table 1 with those obtained using orthogonal point collocation method of reference [6]. All the present results for the isotropic case are obtained using $\beta = 1.01$. In most cases, the error is less than 5% for orthotropic plates and it generally increases with s and decreases with β . The buckling loads of CM plates are less accurate, but the postbuckling loads for $\eta_1 = 2$ are quite accurate. The non-linear vibration response of reference [1] using FEM, for isotropic thick circular plate, presented in Table 2, is in excellent agreement with the present Galerkin solution for a slightly orthotropic plate with a small hole with $\beta = 1.01$, b/a = 0.01. The maximum deflection of plates with b/a = 0.5 under step load $Q_0 = 15$ is compared in Table 3 with the collocation solution of reference [5]. There is very good agreement among these solutions with the maximum difference being 5%. The corresponding static response, not reported here for brevity, is also in good agreement.

The response parameters of clamped and simply supported thick plates with b/a = 0.3 are given in Table 4. The critical load N_{cr} is for the movable inplane condition. The non-linear parameter for the immovable and movable inplane conditions is listed as $\varepsilon_1(I)$ and $\varepsilon_1(M)$ respectively. It is observed that the non-linearity parameter ε_1 is much more for the simply supported plates than the clamped ones. It is also much more for the immovable in-plane condition that the movable one. The influence of the thickness parameter s on ε_1 increases with the modular ratio β . The effect of s on $\alpha_1 N_{cr}$, ω_0 is much more for the clamped plates than the simply supported ones and this effect increases with β .

The dependence of the non-linear response parameter ε_1 , for plate with b/a = 0.3, $\beta = 3$ on the in-plane support stiffness k_i , for the clamped $(k_b = \infty)$ and the simply supported $(k_b = 0)$ cases, is shown in Figure 1(a). The dependence of ε_1 for these plates on the rotational support stiffness k_b , for the immovable $(k_i = \infty)$ inplane condition, is also shown in Figure 1(a). The rate of increase of ε_1 with k_i is predominant in the range of $k_i = 0.1-10$. The rate of decrease of ε_1 with k_b is predominant in the range of $k_b = 0.2-2$. The dependence of ε_1 for plates with b/a = 0.3, $\beta = 3$ on the rotational support stiffness k_b , for the movable $(k_i = 0)$ in-plane condition and for the case of $k_i = k_b$, are presented in Figure 1(b). The effect of the rotational stiffness k_b of movable support on N_{cr} , α_1 , ω_0 for these plates is shown in Figure 2. The rate of change of these response parameters is significant in the intermediate range of k_b .

			SI		CI					
	Pr	esent	Reference	e [1] (FEM)	Pr	esent	Reference [1] (FEM)			
S	s ω_0		ω_0	T_{1}/T_{0}	ω_0	T_1/T_0	ω_0	T_1/T_0		
1000 10 5	1·490 1·482 1·457	0·6517 0·6494 0·6424	1·494 1·481 1·446	0.6682 0.6670 0.6634	3·119 3·050 2·863	0.8612 0.8598 0.8532	3·091 3·011 2·806	0·8607 0·8591 0·8533		

TABLE 2Comparison of non-linear vibration response ($v_{\theta} = 0.3$)

	w_{max}														
	CI									CM SM					
	$\beta = 1$		$\beta = 3$		$\beta =$	$\beta = 10$		$\beta = 1/3$		$\beta = 10$		$\beta = 10$		$\beta = 1/3$	
S	Gal.	Coll.													
100 10 6	1·429 1·482 1·567	1·423 1·496 1·530	1·115 1·164 1·242	1·119 1·153 1·171	0·714 0·777 0·874	0·729 0·774 0·850	0.625 0.710 0.855	0.626 0.730 0.855	0·740 0·815 0·941	0·755 0·816 0·899	1·569 1·596 1·640	1·560 1·594 1·620	1.537 1.589 1.673	1·544 1·570 1·684	

TABLE 3
Maximum deflection at the hole under step load $Q_0 = 15$ (b/a = 0.5)

		Clamped						Simply supported						
β	S	α1	ω_0	$-N_{cr}(M)$	$\varepsilon_1(I)$	$\varepsilon_1(M)$	α1	ω_0	$-N_{cr}(M)$	$\varepsilon_1(I)$	$\varepsilon_1(M)$			
1	100	6.947	3.478	1.480	0.3898	0.1506	1.184	1.398	0.279	1.938	0.3788			
	10	6.707	3.413	1.459	0.3904	0.1462	1.177	1.393	0.277	1.956	0.3803			
	6	6.316	3.302	1.412	0.3962	0.1403	1.165	1.384	0.274	1.987	0.3829			
3	100	11.003	4·251	2.824	0.4131	0.1969	3.242	2.234	0.792	1.414	0.3207			
	10	10.414	4.127	2.713	0.4226	0.1939	3.188	2.213	0.776	1.447	0.3261			
	6	9.499	3.925	2.509	0.4472	0.1919	3.097	2.178	0.750	1.508	0.3359			
10	100	22.222	5.743	7.509	0.3310	0.2006	9.552	3.656	2.441	0.968	0.2827			
	10	19.941	5.433	6.746	0.3554	0.2057	9.104	3.568	2.324	1.018	0.2965			
	6	16.837	4.977	5.609	0.4101	0.2195	8.398	3.425	2.139	1.107	0.3211			
1/3	100	16.586	5.398	3.199	0.2004	0.0727	1.122	1.370	0.252	2.349	0.4462			
,	10	15.281	5.165	3.107	0.2004	0.0675	1.115	1.365	0.250	2.368	0.4475			
	6	13.390	4.795	2.862	0.2121	0.0626	1.104	1.357	0.247	2.403	0.4498			

TABLE 4 Response parameters of annular plates (b/a = 0.3)

Figure 1. Variation of non-linearity parameter ε_1 for plates with b/a = 0.3, $\beta = 3$, (a) with k_i , k_b : (1) $k_b = \infty$, (2) $k_b = 0$, (3) $k_i = \infty$ and (b) with k_b : (1) $k_i = 0$, (2) $k_i = k_b$; (---), S = 100; (---), S = 6.

It is concluded that the present unified simple approximate analytical solution for non-linear static, vibratory and transient response of thick orthotropic annular plate under axisymmetric transverse and in-plane loads yields accurate results.

REFERENCES

- 1. K. KANAKA RAJU and G. VENKATESWARA RAO 1976 *Journal of Sound and Vibration* **47**, 179–184. Axisymmetric vibrations of circular plate including the effects of geometric nonlinearity, shear deformation and rotatory inertia.
- 2. J. N. REDDY and C. L. HUANG 1981 *Journal of Sound and Vibration* **79**, 387–396. Large amplitude free vibrations of annular plates of varying thickness.
- 3. M. SATHYAMOORTHY 1996 Computers and Structures 60, 613-618. Influence of transverse shear and rotatory inertia on nonlinear vibrations of circular plates.

Figure 2. The effect of rotational stiffness k_b of a movable support on N_{cr} , α_1 , ω_0 . (----), S = 100; (---), S = 6.

- 4. M. SATHYAMOORTHY 1996 *Journal of Sound and Vibration* **194**, 463–469. Large amplitude circular plate vibration with transverse shear and rotatory inertia effects.
- 5. P. C. DUMIR and L. SHINGAL 1985 *Ingenieur-Archiv* 55, 413–420. Nonlinear axisymmetric static and transient analysis of orthotropic thick annular plates.
- 6. P. C. DUMIR and L. SHINGAL 1985 Acta Mechanica 56, 229–242. Axisymmetric postbuckling of orthotropic thick annular plates.
- 7. R. NEETHA, K. KANAKA RAJU and G. VENKATESWARA RAO 1986 *Computers and Structures* 23, 869–870. Post-buckling analysis of moderately thick elastic annular plate.
- 8. C. XU and C. Y. CHIA 1995 *Composite Science and Technology* **54**, 67–74. Nonlinear vibration and buckling of analysis of laminated shallow spherical shells with holes.